O termômetro das grandes transformações

A sensação de algo estar quente ou frio é sempre relativa. As pessoas têm sensibilidades e gostos diferentes para a temperatura da comida, por exemplo. Eu particularmente não gosto de comida muito quente e muito menos de queimar a língua. Alguns brincam que é porque sou um cientista que trabalha com baixas temperaturas no laboratório.

Uma situação bem cotidiana para nós é observar as transformações pelas quais a água passa quando mudamos a sua temperatura. Sabemos que ao aquecermos a água em uma chaleira no fogão, em um dado momento começam a surgir bolhas de vapor no fundo da chaleira que levam o líquido a entrar em grande agitação, ou seja, em ebulição.

Se a água for absolutamente pura – o que não ocorre em nossas casas, pois a água que consumimos possui muitos componentes – e se estivermos na cidade do Rio de Janeiro, esse fenômeno acontece a temperatura de 100 oC. Já na cidade de São Paulo, a temperatura em que isso ocorre é aproximadamente de 97,5 oC.

Essa diferença de temperatura deve-se ao fato de São Paulo estar a 760 m de altitude em relação ao nível do mar e por isso tem uma pressão atmosférica menor.

Quando a pressão é mais alta, maior deverá ser a temperatura para que a água mude do estado líquido para o gasoso

Da mesma forma, em uma panela de pressão se cozinha mais rapidamente porque nela consegue-se atingir pressões mais altas (na ordem de 1,4 atmosfera), o que faz com que a água entre em ebulição a 120 oC. Dessa maneira, quanto menor a pressão, mais fácil é para as moléculas da água se transformarem em vapor; quando a pressão é mais alta, maior deverá ser a temperatura para que ela mude do estado líquido para o gasoso.

A ebulição é um processo de evaporação que ocorre abaixo da superfície do líquido, formando bolhas de vapor que são empurradas para superfície devido à força conhecida como empuxo. É interessante observar que quando a água atinge a temperatura de ebulição, esta se mantém até que o líquido se transforme completamente em vapor.

Água em ebulição
Água em ebulição. Apesar de ocorrer em temperaturas altas, trata-se de um processo de resfriamento, pois a energia que é fornecida para ferver o líquido não aumenta a temperatura, mas contribui para o processo de mudança de estado. (foto: Markus Schweiss/ CC BY-AS 3.0)

Dessa forma, a ebulição é um processo de resfriamento, pois a energia que é fornecida para ferver a água não aumenta a temperatura, mas contribui para o processo de mudança de estado.

Por outro lado, se abaixarmos a temperatura a 0 oC, ocorre o fenômeno de congelamento, na pressão de uma atmosfera. Nesse caso, quando a energia é retirada de um líquido, a agitação das moléculas diminui até moverem-se lentamente. Então, as forças atrativas existentes entre elas geram coesão, fazendo com que as moléculas vibrem em torno de posições fixas e formem um sólido – o gelo.

Estados manipulados

Como vimos, o fato de uma substância estar no estado sólido, líquido ou gasoso depende das condições de temperatura e pressão na qual se encontra. Em nosso planeta, devido a sua massa e distância em relação ao Sol, há condições para que a água esteja no estado líquido na temperatura ambiente e que outras substâncias estejam no estado gasoso, como ocorre com os elementos da nossa atmosfera.

Se as temperaturas em nosso planeta fossem muito baixas, além de a água ficar no estado sólido, os gases da nossa atmosfera poderiam estar presentes no estado líquido. O nitrogênio e o oxigênio, quando resfriados a temperaturas muito inferiores ao 0 oC, passam por transformações semelhantes.

O nitrogênio se torna líquido a temperatura de -196 oC e o oxigênio, a -182 oC. Esses gases, quando liquefeitos, têm inúmeras aplicações. O nitrogênio líquido é utilizado em processos de congelamento de alimentos e o oxigênio líquido, por sua facilidade de armazenamento (ele ocupa menos espaço), é usado em hospitais ou ainda como parte do combustível de foguetes espaciais.

A liquefação desses gases ocorreu pela primeira vez em meados do século 19, a partir do desenvolvimento de máquinas capazes de comprimi-los a altas pressões. Dos gases conhecidos na época, só não se conseguiu repetir o processo no hélio, que havia sido recém-identificado. O gás foi observado primeiramente no Sol, que tem cerca de 25% de sua massa composta por esse elemento.

O hélio é encontrado apenas nas regiões profundas da Terra, junto com jazidas de petróleo

A dificuldade de se encontrar o hélio aqui na Terra deve-se ao fato de ele ser um gás nobre, por isso, não faz ligação química com outros elementos e também não forma uma molécula com si mesmo, como é o caso de outros elementos, por exemplo, o hidrogênio, que se apresenta na forma da uma molécula com dois átomos. O hélio é encontrado apenas nas regiões profundas da Terra, junto com jazidas de petróleo. No Brasil, o hélio é muito caro, custando cerca de dezenas de dólares o litro.

Dirigível
Muitos dirigíveis e balões funcionam a base de gases mais leves que o ar, como o hélio. A liquefação do hélio, a baixíssimas temperaturas, abriu caminhos para a descoberta e estudo da supercondutividade. (foto: Wikimedia Commons/ AngMoKio)

O hélio em estado gasoso é usado para encher balões, como aqueles das festas infantis, e em dirigíveis e balões que alcançam a alta atmosfera terrestre. Em estado líquido, chega a atingir a temperatura de -269 oC, ou seja, apenas 4 graus acima da menor temperatura possível, que é de -273,15 oC ou 0 kelvin (a escala absoluta de temperaturas). É nessa temperatura que coisas interessantes começam acontecer.

Intuição desafiada

O físico holandês Heike Kamerlingh Onnes (1853-1926), em seu laboratório de criogenia da Universidade de Leiden, na Holanda, liquefez o hélio pela primeira vez em 10 de julho de 1908. A partir desse feito, Kamerlingh Onnes e sua equipe começaram a estudar as propriedades elétricas de metais a baixas temperaturas.

Heike Kamerlingh Onnes
O Nobel de Física holandês Heike Kamerlingh Onnes (foto: Wikimedia Commons)

Os metais, quando resfriados, têm a sua resistência elétrica reduzida. Esperava-se, portanto que, à medida que sua temperatura se aproximasse de 0 K, a resistência elétrica também fosse a zero.

Contudo, em 8 de abril de 1911, no laboratório de Kamerlingh Onnes, os pesquisadores observaram que a resistência elétrica de um bastão de mercúrio caiu algumas ordens de grandeza, o que levou à descoberta do fenômeno que atualmente conhecemos como supercondutividade. Por ela, Kamerlingh Onnes ganhou o prêmio Nobel de Física de 1913 (Leia a coluna de Carlos Alberto dos Santos sobre o tema).

Assim ficou provado que as mudanças de temperatura alteram as propriedades da matéria. Hoje falamos apenas sobre o que ocorre com algumas substâncias expostas a mudanças bruscas de temperatura, mas os seus efeitos são aplicados a tudo que conhecemos.

Para ser mais enfático: são as mudanças de temperatura que provocam as verdadeiras transformações.

Adilson de Oliveira
Departamento de Física
Universidade Federal de São Carlos