Já diziam os franceses: “Plus çachange, plus c’est la même chose” (quanto mais as coisas mudam, mais elas permanecem as mesmas), frase cunhada por Jean-Baptiste Alphonse Karr (1808-1890). Com ela, esse crítico, jornalista e romancista francês se referia ao fato de que mudanças intensas em um sistema (no caso, social) podem, na verdade, consolidar o sistema original.
Mas, fora das interpretações sociais, a frase tem um paralelo curioso com uma técnica matemática: o uso de invariantes.
O que são invariantes? Como o próprio nome diz, é algo que não muda, independentemente do que fazemos com nosso sistema (matemático). Exemplo ilustrativo: a distância entre dois pontos. Dados dois pontos no espaço, a distância entre eles não depende de nossa orientação ou posição. Podemos girar de um lado para o outro, andar para frente e para trás, que a distância entre eles continuará a mesma. A distância é um invariante geométrico.
Marco Moriconi
Instituto de Física,
Universidade Federal Fluminense